

University Sustainability Practices

a program of the

Global Institute of Sustainability (GIOS)

Nick Brown PhD

Director
University Sustainability Practices
Nick.Brown@ASU.edu

Nick Brown

Energy and greenhouse gases

- \$75 million in energy savings performance contracts
- 14.5 MW of solar photovoltaic panels in operation
- Since 2007, we've reduced GHG emissions 20% GSF⁻¹ and 19% FTE⁻¹

Total GHG emissions = $\frac{269,378}{100}$ MT CO₂e (2010)

Waste and recycling

- 52% reduction in waste to landfills from 2007 to present, almost all of it from <u>aversion</u> projects
- Diverting thirty streams of materials from the landfill with recycling programs
- Building a Zero Waste Roadmap with Waste Management Inc.

Campus engagement

The Sustainable Practices Network engages over 100 faculty and staff in nine work groups:

Facilities Operations

Water

Energy

Building Design and Planning

Solid Waste

Transportation

Procurement

Campus Living/Dining/Activities/Events

Information Technology

Principled practices at ASU

We've developed programs to improve our performance as a campus community.

Sustainability Literacy

Green Offices Program

Green Labs Program

Green Events Program

Green Procurement Policies

Green Design and Construction Policies

Carbon neutrality

- By 2025 all emissions from the institution's built environment will be eliminated or offset
- By 2035 the institution will be climate neutral, eliminating or offsetting all emissions from the built environment, transportation and all other sources

Zero waste

- By 2015 ASU will be a zero solid waste institution
- By 2020 ASU will be a zero waste water discharge institution
- By 2020, ASU will reduce landscape water consumption by 30% and building water consumption by 60% (compared to 2007)

U	Core Expectations for Staff	Ra	ting	5 (higl	h) - 1 (low)
N	See "Evaluation Rating Chart" prior to rating	5	4	3	2	1
I	Service-oriented, Positive Attitude, Helpful					
V	Trustworthy, Adheres to Ethics and Compliance Standards					
RS	Collaborative, Team-oriented					
	Productive , Commitment to ASU					
1	Flexible, Adaptable					
T	Respectful Communicator					
Y	Resourceful, Committed to Sustainability					

Active engagement

- By 2012, 75% of staff
 will score average or
 higher sustainability
 rating on performance
 evaluations
- By 2015, 60% of faculty, staff and students will be engaged as active change agents
- By 2015, all staff will have completed the sustainability literacy program

Principled practices

- By 2013, all purchases will be in compliance with ASU's Green Purchasing Policy
- By 2014, all construction and renovation contracts will be in compliance with ASU's Green Design Policy and Green Construction Policy
- By 2018, all events will be in compliance with ASU's Green Events Policy

Principled practices cont'd

- By 2035, all offices will be in compliance with ASU's Green Offices Policy
- By 2035, all labs will be in compliance with ASU's

Green Labs Policy

From the demand side

- Performance contracts and other engineered conservation and efficiency measures will reduce demand by 20 -25%
- Active engagement (conservation through purposeful actions) will reduce demand by 5 – 10%

From the supply side

- Photovoltaics will reduce demand by 20 25%
- Solar thermal energy will reduce demand by 5%
- Wind energy's impact will be negligible
- Geothermal energy's impact will be negligible

Biomass energy systems will have to displace about 40% of current fossil fuel loads.

What biomass resources are potentially available?

- Solid waste (trash, campus and regional)
- Food waste (from dining facilities, campus and regional)
- Green waste (yard waste, campus and regional)
- Organic industrial by-products and waste (Sun Land Beef Co, Tyson Foods, paper mills, paper products manufacturers, etc.)
- Sludge
- Algae

Rio Salado ecoDistrict

ASU and Waste Management Inc.

- Developing a Roadmap to Zero
 Waste
- Assessing campus solid waste and organic waste streams
 - Waste streams are a resource
 - for compost or for energy systems
 - Energetics values determine selection of technologies
 - Waste stream uses affect GHG inventory

The ASU/WM Roadmap to Zero Waste will include:

- A report detailing the material composition of the current waste stream,
 based on ASU's internal baseline study
- An inventory report that details ASU's initial disposal volumes and costs
- An assessment of current materials, methods, and management practices
- A list of tactical measures, potential cost savings and estimated expenses the campuses can employ to minimize waste, increase diversion and achieve our Zero Solid Waste goal
- A timeline of activities for short-term and long-term implementation of strategies, which will be defined partly by assessments and audits
- A description of opportunities and programmatic strategies for recycling, reuse and elimination of solid waste, hazardous materials, universal waste, and e-waste
- Additional diversion programs

Other USP programs

- Sustainability Tracking, Assessment and Rating System (STARS)
- SustainabilityConnect
- Environmental Data Indicators Management System (EDIMS)
- Campus Students Sustainability Initiative
- Campus Metabolism
- Numerous projects on *Polytechnic, West* and *Downtown* campuses

Cities and GHG emissions inventories

13 AZ cities are signatories to the US Mayors Climate Protection Agreement

Apache Junction

Bisbee

Buckeye

Bullhead City

Flagstaff

Gilbert

Goodyear

Mesa

Oro Valley

Peoria

Phoenix

Tucson

Winslow

Cities and GHG emissions inventories

Municipal operations inventories and community inventories

GHG Summary for municipal operations

cope 1		2005	2010
Stationary combustion	MT CO ₂ e	249	300
Fleet fuels	MT CO ₂ e	663	740
Refrigerants and chemicals	MT CO ₂ e	59	70
Fertilizers	MT CO₂e	1	1
Total Scope 1	MT CO₂e	971	1,111

Scope 2		2005	2010
Purchased electricity	MT CO₂e	1,487	1,828
Total Scope 2	MT CO₂e	1,487	1,828

Scope 3		2005	2010
Air Travel	MT CO ₂ e	1	1
Solid waste	MT CO ₂ e	1,251	1,209
Wastewater	MT CO ₂ e	0.28	0.28
Paper	MT CO ₂ e	18	24
Local travel	MT CO ₂ e	686	683
Scope 2 T&D losses	MT CO ₂ e	97	119
Total scope 3	MT CO₂e	2,053	2,037

Total gross GHG emissions		2005	2010
Total gross GHG emissions	MT CO₂e	4,511	4,976

ts		2005	2010
Total additional	MT CO ₂ e	-	-
Total non-additional	MT CO₂e	(1,800)	(1,800)
Total offsets	MT CO₂e	(1,800)	(1,800)

2005	2010
	4.976
	4.511

GHG Summary (community emissions)

Scope 1		
Stationary combustion	MT CO ₂ e	8,649
Local travel	MT CO ₂ e	13,091
Refrigerants and chemicals	MT CO ₂ e	2,625
Fertilizers	MT CO ₂ e	6
Total Scope 1	MT CO₁e	24,370

Scope 2	cope 2			
Purchased electricity	MT CO ₂ e	11,406		
Total Scope 2	MT CO ₂ e	11.406		

e 3		
Air Travel	MT CO ₂ e	579
Train and trolley travel	MT CO ₂ e	204
Wastewater	MT CO ₂ e	243
Purchased Paper	MT CO ₂ e	1,822
Solid waste	MT CO ₂ e	1,225
Scope 2 T&D losses	MT CO₂e	741
Total scope 3	MT CO e	4 815

Total Gross GHG Emissions		2010
Total gross GHG emissions	MTCO	40 592

Offsets		2010
Total additional	MT CO ₂ e	-
Total non-additional	MT CO₂e	3,000
Total offsets	MT CO₂e	

Total Net GHG Emissions		2010
Total net GHG emissions	MT CO ₂ e	40,592
GHG emissions per capita	MT CO2e	19.6

Cities and GHG emissions inventories

GHG inventories and full cost accounting

A New American University

Nick Brown PhD

Director

University Sustainability Practices
Nick.Brown@ASU.edu